
Reinforcement Learning Practical
Final Project:
Lunar Lander

Efe Görkem !irin and Nihat Aksu

University of Groningen, University of Groningen PO Box 72 9700 AB Groningen

The Netherlands

Abstract. This paper investigates the application of reinforcement learn-

ing (RL) techniques, specifically Linear Q-Learning and Deep Q-Networks

(DQN), to address the Lunar Lander problem. The objective is to au-

tonomously land a rocket on a predetermined pad, posing challenges

in discrete actions and precise control. Despite discretized observations,

Linear Q-Learning struggles with the Lunar Lander’s complex dynamics.

In contrast, DQN, leveraging deep neural networks, successfully learns

non-linear approximations of the Q-value function. Experiments encom-

pass various environmental conditions, including wind and turbulence,

showcasing DQN’s adaptability to increased complexity. Results high-

light the scalability of solution approaches, with a deeper DQN architec-

ture capturing more nuanced state-action relationships. Unexpectedly,

the addition of wind and turbulence does not necessarily elevate the

environment’s complexity; a more generalized DQN model trained in a

varied environment performs better. This study underscores the impor-

tance of selecting appropriate RL algorithms based on task intricacies

and environmental characteristics, providing insights into the e!cacy of

RL in solving complex problems.

Keywords: Keywords: Reinforcement Learning, Lunar Lander, Linear

Q-Learning, Deep Q-Networks (DQN), Autonomous Landing, Complex

Dynamics, Neural Networks.

1 Introduction

Becoming an astronaut is a common childhood dream among the team, however,
after realizing us becoming an astronaut is statistically improbable we decided
to give our best e"orts to take away astronauts’ jobs using AI. Therefore we
choose the lunar landing problem as a starting step.

Particularly in dynamic and unpredictable situations, Reinforcement Learn-
ing (RL) has become a potent paradigm for resolving complicated decision-
making problems (Gadgil et al., 2020). To create an intelligent agent that can
land a rocket on a predetermined pad on its own, we use RL approaches to take
on the challenge of optimizing the Lunar Lander trajectory.



2 Efe, Nihat

The Lunar Lander environment is grounded in Box2D physics, representing
a classic problem in RL. The task involves guiding a rocket to a safe landing,
where the landing pad is located at coordinates (0,0). The challenge lies in nav-
igating discrete actions, including firing left, main, or right orientation engines,
or taking no action. This discrete action space aligns with Pontryagin’s maxi-
mum principle, suggesting that the engine should be either at full throttle or
completely o".

There are two variations of the environment: continuous and discrete. The
agent must learn exact engine control to accomplish a successful landing. By
enabling more precise control over the throttle of the main engine and the lat-
eral boosters, the continuous version adds even more complexity but we will be
working with a discrete version of the environment in this paper.

In our project, we implemented linear Q-learning and Deep Q-Networks
(DQN) independently to assess their performance in solving the Lunar Lander
problem. Linear Q-learning, a classic reinforcement learning algorithm, serves
as a benchmark for comparison, while DQN, a more advanced approach that
incorporates neural networks, allows us to explore the benefits of deep learning
in this complex task.

In this paper, we seek to find an answer to whether Linear Q Learning and
DQN will be able to solve the task of landing the lunar lander. We predict that
they both will be able to solve the task but predict that DQN will achieve higher
scores due to their ability to capture more complex environments.

2 Methods

2.1 Environment

The essence of the problem is to navigate the lander to the landing pad us-
ing the thrusters on the lander. We use the environment provided by OpenAI
Gymnasium, "LunarLander-v2"(Gymnasium Documentation, n.d.).

The lunar lander environment is deterministic. The interactions in the en-
vironment are based on the physics simulation, therefore, they are consistent
given the same initial conditions and actions. The initial position of the lander
is constant, which is the center concerning the x-axis and the top concerning
the y-axis. The lander starts with a random initial force applied to its center of
mass. The wind is generated using the function:

tanh(sin(2k(t+ C)) + sin(ωk(t+ C)))

where k is set to 0.01, and C is sampled randomly between -9999 and 9999.
Turbulence_power dictates the maximum magnitude of rotational wind applied
to the craft. We used a wind value of 15 and a turbulence value of 1.5.

The scoring system for the lander’s performance varies based on its proxim-
ity to the landing pad, its speed, its angle of tilt, and its leg contact with the
ground. Specifically, the score increases or decreases depending on whether the
lander is closer or further from the landing pad, and it similarly adjusts based



Reinforcement Learning Practical Final Project: Lunar Lander 3

on the lander’s speed, with slower movements increasing the score. The score is
negatively impacted the more the lander tilts away from a horizontal orientation.
For each leg that makes contact with the ground, the score is increased by 10
points. However, using the side engines and the main engine detracts from the
score, with deductions of 0.03 and 0.3 points for each frame they are firing, re-
spectively. The episode’s outcome further influences the score, adding 100 points
for a safe landing or subtracting 100 points for a crash. For an episode to be
deemed a success, the score must reach at least 200 points. The reward is de-
pendent only on the current state and action therefore it is an episodic problem.
We limit each attempt to 1000 steps to make it a finite horizon problem.

We have a continuous state and observation space. The state is an 8 dimen-
sional vector of the coordinates of the lander in x and y dimensions, its linear
velocities in x and y dimensions, its angle, its angular velocity, and two boolean
values that represent whether each leg is in contact with the ground or not. The
action space however is discrete. The agent has the option to do nothing, fire
the left orientation engine, fire the main engine, and fire the right orientation
engine; they are numbered 0, 1, 2, and 3 respectively. The environment is fully
observable because all necessary state information is known at every frame.

2.2 Q-Learning

Q-learning is a model-free reinforcement learning algorithm used to inform an
agent on how to act optimally in a given environment by learning the value of
actions in di"erent states. It is not dependent on an environment model and
can deal with issues involving random transitions and rewards without requiring
modifications. The fundamental principle of Q-learning is the estimation of the
optimum action-value function, which provides the predicted utility of choosing
the best course of action in a given condition and then acting accordingly.

The algorithm maintains a table (Q-table) where each entry Q(s, a) repre-
sents the estimated value of taking action a in state s. The Q-values are updated
iteratively using the Bellman equation:

Q(s, a) → Q(s, a) + ε[r + ϑmax
a→

Q(s→, a→)↑Q(s, a)]

where ε is the learning rate, r is the reward received after taking action a in
state s, s→ is the subsequent state after action a is taken, ϑ is the discount factor
that balances the immediate and future rewards, and maxa→ Q(s→, a→) represents
the estimated maximum future reward from the next state s→.

Because Q-learning is o"-policy, it gains knowledge about the optimum pol-
icy’s worth without regard to the agent’s behaviors. This promotes the explo-
ration of the state-action space by enabling the agent to learn from exploratory
acts that might not necessarily be included in the present policy. The Q-table
converges to the optimal action-value function over time as the agent updates
the Q-values and investigates the surroundings. This enables the agent to choose
the action with the greatest Q-value in each state to choose the best course of
action.



4 Efe, Nihat

Because of its ease of use and e#ciency in discrete, finite Markov Decision
Processes (MDPs), this algorithm is a cornerstone approach in the field of rein-
forcement learning, with applications ranging from robotic control to gameplay.

2.3 Linear Q-Learning

Instead of keeping a table for every conceivable state-action pair, linear Q-
learning is a variation of the Q-learning technique that uses a linear combina-
tion of characteristics generated from the state-action pairings to approximate
the action-value function, Q(s, a). This method works especially well in settings
where it is not practicable to maintain a discrete Q-table, such as those with
a vast or continuous state space. The Q-value for a state-action pair in linear
Q-learning is expressed as follows:

Q(s, a) = ϖTϱ(s, a)

where ϖ is the weight vector and ϱ(s, a) is the feature vector that is obtained
from the state s and action a. The selection of characteristics is crucial and has
a big influence on how e"ective and e#cient the algorithm is.

Iteratively updating the weights ϖ in response to variations between estimated
Q-values and observed rewards is the learning process. In a linear setting, the
update rule is:

ϖ → ϖ + ε[r + ϑmax
a→

Q(s→, a→)↑Q(s, a)]ϱ(s, a)

where ε is the learning rate, r is the immediate reward, ϑ is the discount factor,
s→ is the subsequent state, and maxa→ Q(s→, a→) represents the maximum esti-
mated reward for the next state s→ over all possible actions a→. By minimizing
the prediction error, this rule modifies the weights ϖ, gradually improving the
approximation of the Q-function.

2.4 Deep Q-Networks (DQN)

By combining deep neural networks with Q-learning, Deep Q-Networks (DQN)
o"er a breakthrough in reinforcement learning, allowing agents to learn opti-
mum policies in high-dimensional state spaces straight from unprocessed sen-
sory inputs. DQN, developed by DeepMind, uses Convolutional Neural Networks
(CNNs) to overcome the drawbacks of conventional Q-learning and linear func-
tion approximation techniques (Mnih et al., 2013). This allows for the automatic
extraction and learning of features from complicated inputs. The main innova-
tion of DQN is its ability to use a deep neural network that accepts the state as
input and outputs Q-values for all possible actions to approximate the action-
value function:

Q(s, a)

where s is a state and a is an action.



Reinforcement Learning Practical Final Project: Lunar Lander 5

DQN uses several crucial strategies to enhance and stabilize the learning
process. It first employs experience replay, which stores experiences in a replay
bu"er at each time step (referred to as transitions (s, a, r, s→). The network is
updated using random mini-batches from this bu"er, which smoothens variations
in the data distribution and lessens correlations in the observation sequence.
Second, DQN generates the Q-value targets using a di"erent target network.
To reduce the possibility of feedback loops between the Q-values and the target
values, which could result in unstable learning dynamics, the weights of this
network are periodically updated with the weights of the learning network.

When a DQN is trained, its goal is to minimize the di"erence in loss between
the target and predicted Q-values. The target Q-values are calculated by taking
the action’s observed reward and discounting the highest future reward that
the target network predicts. The DQN can learn policies e#ciently from high-
dimensional inputs thanks to this learning process, which makes it suitable for a
variety of sophisticated tasks, such as robotic control and playing Atari games.

Because of their unique benefits in managing the discrete action spaces and
continuous state spaces characteristic of this task, Linear Q-learning and Deep
Q-Networks o"er attractive solutions for the Lunar Lander. Thanks to its ease
of use and e"ectiveness, linear Q-learning works especially well in settings where
the state space may be discretized. This method makes an excellent choice for
initial experiments, environments with limited computational resources, or where
interpretability of the learned policy is important because it can be implemented
simply and quickly converge to a reasonable policy for safely landing the space-
craft.

However, DQN does not require human feature engineering since it uses deep
neural networks to automatically extract and learn features from the continu-
ous state space of the Lunar Lander environment, even with its complicated
dynamics. The ability to navigate and land on the lunar surface while under the
influence of gravity, while maintaining precise control over movement, is a criti-
cal skill for the Lunar Lander challenge. Stable and e"ective learning even in the
high-dimensional state spaces is made possible by the employment of experience
replay and a target network in DQN, which separately handle the problems of
correlation in sequential input and non-stationarity of targets.

Through processes such as epsilon-greedy strategies, both algorithms are
skilled at managing the exploration-exploitation trade-o", a crucial part of learn-
ing in reinforcement learning. This guarantees that the agent will be able to
gradually identify and strengthen the best landing tactics. The decision between
DQN and Linear Q-learning ultimately comes down to the environment’s com-
plexity, the necessity for feature abstraction, and the particular need for com-
puting e#ciency. Linear Q-learning provides a less complex, but still powerful,
alternative for environments where the dynamics can be captured with less com-
plexity. DQN’s ability to handle high-dimensional inputs and extract features
makes it an especially powerful choice for the Lunar Lander environment, where
mastering the dynamics is crucial to success.



6 Efe, Nihat

2.5 Loss Function

MSE =
1

n

n∑

i=1

(yi ↑ ŷi)
2

Since Mean Squared Error (MSE) is a good way to quantify the di"erence
between the target and predicted Q-values, it is frequently used as a loss function
in Q-learning, including both Deep Q-Networks (DQN) and Linear Q-learning.
A clear, quantitative indicator of how well the agent’s Q-value predictions match
the observed rewards plus the discounted future rewards is provided by the Mean
Squared Error (MSE), which is calculated as the average of the squares of the
discrepancies between the predicted and actual values. This is important for
reinforcement learning tasks, where the objective is to learn an optimal policy
by minimizing the error in the value function estimation.

Because MSE is quadratic, it penalizes larger mistakes more than smaller
ones. This feature is useful in the Lunar Lander setting, because the agent may
crash or miss the landing pad if major deviations from ideal behavior occur.
These events might have considerable negative consequences. MSE pushes the
learning algorithm to concentrate on decreasing these significant errors by pun-
ishing these huge errors more severely, which results in more robust learning.

Fundamentally, Q-learning may be understood as an attempt to regress the
predicted rewards for action-state pairings in a regression issue. Since MSE is
a common regression loss function, it is a good fit for estimating Q-values, or
predicted future rewards.

2.6 Exploration Strategy

Choose action a

{
Explore: select with probability ς

Exploit: select the best-known with probability 1↑ ς

The epsilon-greedy exploration strategy is a straightforward but e#cient way
to find a balance between exploration and exploitation. It operates by arbitrarily
choosing the most well-known action with probability 1- ς, a little positive num-
ber, and actions with probability ς (epsilon). Using this method enables the agent
to experiment with the surroundings to learn about its dynamics and identify
the best course of action. Simultaneously, it leverages the agent’s present under-
standing to consistently arrive at optimal options. The epsilon-greedy approach
was selected for the Lunar Lander scenario due to its e#cacy in managing the
exploration-exploitation trade-o" in settings that necessitate cautious naviga-
tion and uncertain decision-making. The goal of the Lunar Lander mission is to
safely land a spacecraft on a landing pad while using the least amount of fuel
possible. The epsilon-greedy approach is a sensible option for this challenging
assignment since it allows the agent to experiment with di"erent landing tech-
niques to e"ectively finish the mission while steadily enhancing its performance
as it gains experience.



Reinforcement Learning Practical Final Project: Lunar Lander 7

2.7 Experiments With Linear Q Learning Agent

We planned to experiment in conditions where the complexity of the environ-
ment increases. Initially, we start with the basic environment with no wind and
turbulence. Then as we successfully train an agent to find a solution we will
transition to the harder environment. We begin with the continuous observa-
tions and if the agent fails to learn we will discretize the observations and repeat
the experiment.

2.8 Experiments With DQN Agent

Similarly, we planned to experiment in conditions where the complexity of the
environment increases with added wind and turbulence. We experimented with
neural networks with increasing complexity. We start with 2 layers consisting of
64 neurons and increase the number of layers until the agent learns.

2.9 Hyperparameters

For both agents, the initial timestep is set to 0, indicating the start of the learn-
ing process. The batch size, crucial for the mini-batch training approach, is fixed
at 64, allowing for a balance between training speed and memory utilization.
The discount factor (gamma), set at 0.99, emphasizes the importance of future
rewards, enabling the agents to prioritize long-term gains over immediate re-
wards. The soft update parameter (tau), at a value of 0.001, ensures gradual
updates to the target network, facilitating stable learning. The learning rate, a
critical hyperparameter for the optimization algorithm, is maintained at 0.0001,
supporting the convergence of the learning process by adjusting the magnitude
of weight updates. Furthermore, the network update frequency is set to every
4 timesteps, balancing between the computational e#ciency and the need for
timely network updates.

Additionally, the training process incorporates an exploration-exploitation
strategy through an epsilon-greedy policy, with an epsilon decay rate of 0.995.
This approach allows the agent to progressively focus more on exploitation by re-
ducing the epsilon value, starting from an initial value of 1.0 down to a minimum
of 0.0. This gradual reduction in exploration ensures that the agent su#ciently
explores the environment in the early stages of training, gradually shifting to-
wards exploiting the learned policy as it becomes more confident in its decisions.
The careful calibration of these hyperparameters plays a pivotal role in the
learning e#cacy and overall performance of both Linear and DQN agents in
navigating complex environments and achieving optimal decision-making.

3 Results

In our first experiment with Linear Q Learning, in Figure. 1 we can see that
the agent did not learn based on the learning curve. Also, it failed to land in all



8 Efe, Nihat

Fig. 1. Figures show the rewards of the agent concerning learning iterations. Figure

on the left is the Linear Q agent performance with continuous state space and on the

left is the same model’s performance in discretized state space.

Fig. 2. No Wind, No Turbulence case for 3-4-5 layered DQN model training over num-

ber of episodes.

Fig. 3. Windy, No Turbulence case for 3-4-5 layered DQN model training over number

of episodes.



Reinforcement Learning Practical Final Project: Lunar Lander 9

Fig. 4. Windy with Turbulence case for 3-4-5 layered DQN model training over number

of episodes.

the trials in the testing phase. Therefore we continued our experiments with an
improved approach. In the second experiment, we discretized the observations
expecting that it can make it easier for the linear function approximator to learn
the relationships. However, based on the learning curve once again we conclude
that the agent did not learn. Similar to the previous version all the landings
in the test phase failed. We conclude that linear Q-learning is not a suitable
approach for this problem without feature engineering or other methods that
allow the linear function approximator to learn the q values.

For the most basic condition in the environment without wind and turbu-
lence, we see that the agent does not learn with 2 layers using the DQN method.
In Figure. 2 we see the agent starts learning with 3 layers and performs best
with 4 layers. Looking at the learning curves we observe that the agent starts
getting more than 200 points more quickly as the networks get deeper. However,
our tests show that 4-layered networks perform better than the others. Out of
1000 trials, we get 90.3% successful landings, with an average of 254.53 points.
The random agent fails the landing 100% of the time. When we applied an in-
dependent two-sample t-test on the rewards they received in the testing phase
we obtained a p=0.0<0.05 showing our result is statistically significant.

When the wind is added to the environment the results do not change dras-
tically. In Figure. 3 we see that di"erent than the previous experiment the learn-
ing curve for the 3-layer network starts getting successful landings faster than
deeper networks. Also, the learning curve for the 3-layer network looks more sta-
ble. However, the model with 4 layers outperformed the others with an average
score of 191.27 and a success rate of 73.5%. The random agent failed the landing
100% of the time once again. independent two-sample t-test on the rewards they
received in the testing phase we obtained a p=0.0<0.05 showing our result is
statistically significant.

With the addition of turbulence, we get the most di#cult environment. The
model with the 4 layers performs best once again with an average score of 153.88
points and a success rate of 69.2%. Unsurprisingly, the random agent fails all the
landings once again. two-sample t-test on the rewards they received in the testing
phase we obtained a p=0.0<0.05 showing our result is statistically significant.



10 Efe, Nihat

4 Discussion

Experiments showed that the linear Q-learning approach is not successful even
with discretized observations in the most basic condition. The Linear Q-Learning
algorithm’s ine"ectiveness in addressing the Lunar Lander problem can be at-
tributed to its inherent simplicity. Linear Q-Learning, which uses a linear func-
tion to approximate the Q-value function, struggles with high-dimensional state
spaces and environments requiring the capture of complex state-action relation-
ships. The Lunar Lander problem presents challenges beyond the capacity of
linear approximation methods. This limitation is a strong reminder of the lin-
ear model’s inability to handle the non-linear dynamics often present in more
complex RL environments.

On the contrary, the DQN approach, which utilizes deep neural networks
to approximate the Q-value function, demonstrates significant success in tack-
ling the Lunar Lander challenge. The strength of DQN lies in its ability to
learn non-linear approximations of the Q-value function, enabling it to e"ec-
tively process and act upon high-dimensional sensory inputs. By leveraging the
representational power of deep neural networks, DQN can capture the intricate
relationships between actions and states in complex environments, a capability
that linear models lack.

The transition from simpler models to more sophisticated ones like DQN
highlights an essential consideration in RL. The scalability of solution approaches
with environmental complexity. As the complexity of the task increases, the need
for more complex models becomes obvious. In our study, the improvement of the
DQN architecture through the addition of more layers further underlines this
point. Increasing the depth of the neural network allowed for a more nuanced
understanding and representation of the environment, leading to improved per-
formance. This adaptation underscores the adaptability of DQN architectures to
the demands of more complex environments, where the intricacies of state-action
relationships exceed the representational capabilities of simpler models.

Contrary to what we expected the added wind and turbulence do not increase
the complexity of the environment as the way that we expected. We expected
that a more complex model would perform better as the complexity of the en-
vironment increases. After thinking about the problem more deeply we realized
that wind and turbulence a"ect the velocity and angular velocity of the lander
but this information is captured in the observation space. The only thing that
changes is the variety of possible combinations introduced to the network. Our
testing in a no wind no turbulence environment with the agent that is trained
in the wind and turbulence condition performs better than the agent trained
specifically for that environment supports this interpretation of the results. The
model generalizes better because it encounters a larger variety of states and this
helps the agent to perform better.



Reinforcement Learning Practical Final Project: Lunar Lander 11

References

1. Gadgil, S., Xin, Y., Xu, C.: Solving The Lunar Lander Problem under Uncertainty

using Reinforcement Learning. arXiv:2011.11850 [cs.LG] (2020), https://doi.org/
10.48550/arxiv.2011.11850

2. Gymnasium: Gymnasium documentation. Accessed: [insert the date you

accessed this resource], https://gymnasium.farama.org/environments/box2d/
lunar_lander/#notes

3. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M.: Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602

[cs.LG] (2013), https://doi.org/10.48550/arxiv.1312.5602

5 Appendix

Fig. 5. Figure 6: model_DQN_3_layers_wind_15.0_no_turbulence

https://doi.org/10.48550/arxiv.2011.11850
https://doi.org/10.48550/arxiv.2011.11850
https://gymnasium.farama.org/environments/box2d/lunar_lander/#notes
https://gymnasium.farama.org/environments/box2d/lunar_lander/#notes
https://doi.org/10.48550/arxiv.1312.5602


12 Efe, Nihat

Fig. 6. Figure 7: model_DQN_3_layers_wind_15.0_turbulence_1.5

Fig. 7. Figure 8: model_DQN_4_layers_no_wind_no_turbulence



Reinforcement Learning Practical Final Project: Lunar Lander 13

Fig. 8. Figure 9: model_DQN_4_layers_wind_15.0_no_turbulence

Fig. 9. Figure 10: model_DQN_4_layers_wind_15.0_turbulence_1.5



14 Efe, Nihat

Fig. 10. Figure 11: model_DQN_5_layers_no_wind_no_turbulence

Fig. 11. Figure 12: model_DQN_5_layers_wind_15.0_no_turbulence



Reinforcement Learning Practical Final Project: Lunar Lander 15

Fig. 12. Figure 13: model_DQN_5_layers_wind_15.0_turbulence_1.5

Fig. 13. Figure 14: model_DQN_6_layers_wind_15.0_turbulence_1.5



16 Efe, Nihat

Fig. 14. Figure 15: model_DQN_7_layers_dropout_wind_15.0_turbulence_1.5

Fig. 15. Figure 16: piemodel_DQN_3_layers_no_wind_no_turbulence



Reinforcement Learning Practical Final Project: Lunar Lander 17

Fig. 16. Figure 17: piemodel_DQN_3_layers_wind_15.0_no_turbulence

Fig. 17. Figure 18: piemodel_DQN_3_layers_wind_15.0_turbulence_1.5



18 Efe, Nihat

Fig. 18. Figure 19: piemodel_DQN_4_layers_no_wind_no_turbulence

Fig. 19. Figure 20: piemodel_DQN_4_layers_wind_15.0_no_turbulence



Reinforcement Learning Practical Final Project: Lunar Lander 19

Fig. 20. Figure 21: piemodel_DQN_4_layers_wind_15.0_turbulence_1.5

Fig. 21. Figure 22: piemodel_DQN_5_layers_no_wind_no_turbulence



20 Efe, Nihat

Fig. 22. Figure 23: piemodel_DQN_5_layers_wind_15.0_no_turbulence

Fig. 23. Figure 24: piemodel_DQN_5_layers_wind_15.0_turbulence_1.5



Reinforcement Learning Practical Final Project: Lunar Lander 21

Fig. 24. Figure 25: piemodel_DQN_6_layers_wind_15.0_turbulence_1.5

Fig. 25. Figure 26: piemodel_Random_no_wind_no_turbulence



22 Efe, Nihat

Fig. 26. Figure 27: piemodel_Random_wind_15.0_no_turbulence

Fig. 27. Figure 28: piemodel_Random_wind_15.0_turbulence_1.5



Reinforcement Learning Practical Final Project: Lunar Lander 23

Fig. 28. Figure 29: 4 Layered DQN trained with wind and turbulence but tested on

no wind no turbulence conditions.


	Reinforcement Learning PracticalFinal Project: Lunar Lander

